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A new cluster-effective-field theory of spin glasses is formulated. Basic formulas 
for the spin-glass transition point and the spin-glass susceptibility in the 
high-temperature phase are obtained. The present theory combined with 
the coherent-anomaly method is shown to be useful to estimate the true 
critical point and the nonclassical critical exponent of a spin-glass transition. 
Concerning the two-dimensional _+J model, we have ~,= 5.2(1) for Ts~ =0, 
which agrees well with the data by some other authors. As for the three- 
dimensional + J  model, the present tentative analysis gives Tsa = 1.2(1)(J/kB) 
and 7,= 4(1), but more extensive calculations are needed. 

KEY WORDS:  Effective-field theory; spin-glass transition; coherent-anomaly 
method; nonclassical critical exponent; _+ J model. 

1. I N T R O D U C T I O N  

Since Edwards and Anderson (1) proposed a mean-field theory of spin 
glasses, many theoretical studies (see ref. 2 for a review) have been made 
to clarify its essential feature. Among others, the Sherrington-Kirkpatrick 
model, (3) a model with infinite-range interactions, is well explained by 
Parisi's solution (4) of the replica-symmetry-breaking. On the other hand, as 
concerns a more realistic model with short-range interactions, there remain 
many fundamental unsolved problems. To know the lower critical dimen- 
sionality of the spin-glass transitions and to study their nonclassical critical 
exponents are some of the most interesting problems (19-23) on spin glasses. 
The application of the renormalization-group technique to the spin-glass 
transition has a difficulty. It predicts the upper critical dimensionatity (s) 
du = 6, and consequently it is rather difficult by the e-expansion method to 
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know the existence of the transitions in the two- and three-dimensional 
systems and to study their critical exponents. For this reason, the numeri- 
cal simulations (m'21.23) have been made mainly to study the criticality of 
spin glasses. 

Recently, a new approach to critical phenomena, the coherent- 
anomaly method (CAM), (6 s~ has been proposed. Usually, an approxima- 
tion of the mean-field type yields a singularity of the response function with 
a classical, or Landau-type, exponent. Its residue, however, grows larger, as 
the singular point of the mean-field theory approaches the true critical 
point by improving approximations, owing to the discrepancy between 
the classical exponent and the nonclassical one. The CAM is a method 
for obtaining nonclassical critical exponents from a "coherent anomaly," 
namely the way the residue grows as the approximation is improved 
systematically (for example, as the treated clusters are enlarged). Thus it 
becomes important to construct a systematic series of approximations to 
the spin-glass transition. 

In the present paper, we construct a cluster-effective-field theory of 
spin glasses. In Section 2, basic formulas for the spin-glass transition point 
and the spin-glass susceptibility are obtained. They can be improved in 
numerical value systematically in accord with the enlargement of the 
cluster size. Indeed, we observe the improvement by applying the theory to 
the two- and three-dimensional _+J models. In Section 3, the CAM is 
briefly reviewed. Applicability of the CAM to the present theory is dis- 
cussed. In addition, a way to find the convergence of a series of approxima- 
tions is mentioned. In Section4, the numerical results mentioned in 
Section 2 are analyzed by the CAM, and the critical exponents thus 
obtained for the two- and three-dimensional _+J models are discussed. 

2. THE  F O R M U L A T I O N  OF EFFECTIVE-F IELD T H E O R Y  OF 
SPIN GLASSES 

In the present section, an effective-field approximation of the spin- 
glass transition is formulated. An expression for the spin-glass susceptibility 
in this approximation is obtained. The zero of its denominator gives the 
spin-glass transition point Tso. The numerical results obtained for some 
clusters of two- and three-dimensional _+ J models are listed. 

2.1. Ef fect ive  Hami l ton ians  

First, an effective Hamiltonian is defined for each sample. It contains 
effective fields which themselves have their probability distributions. 
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Consider, as an original Hamiltonian, the short-range Edwards- 
Anderson model 

)fzg({J,j}) -= -- ~ Jga,a s - # B  H 2 a, (1) 

where cr's denote Ising spins. Each interaction J0 has its probability 
distribution P(J+j) over samples. The free energy of the total system is 
defined as follows: 

F -  --ka T[log Z({J0.})] av (2) 

where Z({Jo} ) denotes the partition function of a system of a bond 
configuration {Jo}: 

1 
Z({Ji j})=-Tre -~EA({J'+}) with f l - - -  (3) 

kBT 

and [--.-]av denotes the quenched average: 

["" ] av -- f "" 1-[ P(J~) dJo (4) 
(o) 

For a system of a given bond configurativn, an effective Hamiltonian 
of the relevant cluster f2 (Fig. 1) is defined by 

e fl~ ~--- const �9 T r e e  r (5) 

O- i 

Fig. 1. The cluster 12. 
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where Tr~ denotes the trace with respect to spins which do not  belong to 
the cluster f2. This effective Hamiltonian can be written generally in the 
form 

~ee~ = Jf~ -- #B ~ H(1)t;~ eft t~!  O-i - -  ~2B E f ' [  (3)11 --~fr ~', J, k) ~riala k . . . .  
i e O ~  i, j, k e ~ ( 2  

- -  E 1 ( 2 ) [ i  " " o~ffto, j )  a iay - -  ~ Oeff/(4)l/~', j ,  k, l )  a i a y a k a l -  . 
i, j ~  ~s i, j , k ,  l e  @f2 

where 

(6) 

H a  = - Z JHa,as--CzBH ~ az (7) 
<lJ>~g2 1r 

denotes the original Hamiltonian of the cluster f2. Each of the effective 
fields Heff and Yaf has its probability distribution due to the distributions 
of bonds outside the cluster. The following two lemmas can be proved. 

L e m m a  1. Let the bond distribution P(Ji j )  be symmetric. In the 
paramagnetic phase with no magnetic fields, the quenched averages of all 
the odd effective fields vanish: 

[ • 4 ( . ) 1  = 0  for n =  1, 3, 5 .... (8) x~ elf J a y  

owing to the "gauge symmetry. ''(13) 

l . e m m a  2. Consider a spin operator S on the cluster f~. In the 
paramagnetic phase, a quenched average can be decomposed as follows: 

where 

(n) [<S>~ .H~ff].v = [ < S > a ] ~  r . ( , , ) l  L ~ a  e f t  A a v  (9) 

Tre  S e -  ~ 
< S > ~ -  Tr~ e -~e~ (10) 

and Tre  denotes the trace with respect to spins which belong to the 
cluster s 

This holds because the probability distributions of the bonds inside the 
cluster and those outside the cluster are independent of each other. 

2.2. The One-Body-Ef fect ive-F ie ld  Approximat ion 

Since it is impossible to determine the probability distributions of all 
the effective fields, some approximations must be introduced to study them 
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explicitly. In the present paper, as an approximation, we neglect the "multi- 
body effective fields": 

H~- )=n  for n = 3 , 5 , 7  .... (11) eft - -  v 

j ( , )  = n for n = 2 ,  4, 6 .... (12) eff - -  

and determine the probability distributions of the "one-body effective 
fields" (1/ �9 H,fr(t ) with a self-consistency condition. In the following, ,,14(1)err is 
abbreviated to Hell. 

Let the bond distribution be a symmetric function to use the gauge 
symmetry. The following assumption is imposed, 

A s s u m p t i o n  3. The probability distributions of the one-body 
effective fields in the paramagnetic phase can be assumed to follow a nearly 
Gaussian distribution, i.e., 

4 2 2 [Heff]av O(H 4) I - H o , L v  ~ ~ ( 1 3 )  

It is sufficient under this assumption to obtain the second moments of the 
probability distributions of the effective fields for treating the paramagnetic 
phase. Then we make the self-consistency condition for the effective fields 
as follows: 

[- ( O ' 0 ) 2 ] a v  = [ ( O ' i ) 2 ] a v  V i  E O~t-2 ( 1 4 )  

where a o denotes the spin at the center of the cluster s In the spin-glass 
phase, this assumption probably does not hold (14) and we will have to 
determine also higher moments: See Fig. 2. 

" g e e  " 

(a) (b) 

Fig. 2. Schematic forms of the probability distribution of HCff: (a) T> TSG; (b) T< TSG. 
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To obtain an expression for the spin-glass susceptibility, we need to 
discuss Eq. (14) only (15) of the order of H 2. For a given bond configura- 
tion, we can expand <%)  and <o-;> both in an applied magnetic field and 
effective fields as follows: 

<Oo> = Y. <-o~.>,, l .=oK+ Y~ <~o~j>~,I.=oLj 
J~-Q je~.Q 

+ O(K 3, K=L, KL 2, L 3 ) 

<~,>= ~ <~r;~rs>al.=oK+ ~ <aecrj>al,~=oLj 
J~ t2  j ~ a t 2  

+ O(K 3, K2L, KL 2, L 3 ) 

(15) 

(16) 

where K -  fll~BH and Lj = flktBHerf(j). Here, we have set <..->In__Heft_ 0 

( ' " ) a [ t z=o ,  since multi-effective fields are neglected. We have also set 
<ao)oln_o = <~;)OlH=O=0. The remaining correlation functions can be 
calculated analytically. In the following, the average ( . . . ) a l H _ o  is 
abbreviated to ( - . . ) ao .  The expansion of [<ao)=]av gives 

[ <0"0>21av = S 2 2 [<~oaD~o].~K 
JE~ 

+ ~ [(O'oO',)~2o <O'o~J>~O]~v K 2 
I~J~Cd 

+ 2 I-<,~o~j>~o/~]~v 
j~c~s 

+ y' [(~7o~;)>~o <~ro~rj)gaoLiLj]~v 

+2  ~ [<aoaJ>OO <Oo~7;>.c2oLj]avK 
J e.Q,j e ~U2 

+ O(K 4) + O(K2[L2]av) + 0([L4]av) (17) 

The quenched averages included in the third, fourth, and fifth terms can be 
decomposed owing to Lemma 2: (9). In addition, the second and fourth 
terms vanish owing to the gauge symmetry, (13) and the fifth term vanishes 
owing to Lemma 1: (8). The t e rms  O(KZ[LZ]av) and O([L4]av) are of the 
order of K 4 owing to Assumption 3: (13). The average [<o-;)2]av can also 
be expanded similarly. Consequently, the remaining terms are 

[<~o>=].v = ~] [<O-o~D~o].v K= + 
J~f2  j ~ c~t2 

~ s av [ < a o a j  2 [ L 2 ] a v + O ( K  4) 

(18) 
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F<o'i>2]av~--- 2 [<O'tO'g>2K20 larK2"{- S 
J~g2 jE~3.Q 

[ <O-iO'y )20]av [Lf]av + 0(K 4) 

(19) 

Substitution of (18) and (19) in the self-consistency condition (14) yields 
the set of' equations 

~o[L~]~v=K2fl,+O(K 4) Viea• (20) 
j~ag2 

where 

gzy = [<O'iO-i>~Olav-- [<O-offi)~O]av 

fli~--- S {l-<O'O0"'>bolav-- [<O'/O">~O]av} 
J~Q 

Equations (20) give the second moments of the 
Herr(j) = LJ( f lpB)  in the form 

effective 

(21) 

fields 

[L2lav--K2 2 (O;-1)Jifli +O(K4) 

K 2 
- 2 ~Jifli~-O(K4) (22) 

det ~ i~aa 

where the matrix (~) denotes the cofactor matrix of the matrix (~), i.e., 
(~-1) _= (~)/det ~. 

As previously mentioned, it is sufficient to determine the second 
moments of the probability distributions of the effective fields for obtaining 
an expression for the spin-glass susceptibility in the paramagnetic phase. 
Substitution of (22) in (18) yields 

= [ < ~ o ~ D ~ , o L v  

, } +d--~ y~ [<~o~,>~,oLv<jg K2+O(K 4) (23) 
i,j~af2 

Then we arrive at the following formula for the spin-glass susceptibility: 

2 a E<a~ H o zs~ - u ~  ~ = 

=Nfl2t ~4 [ (0"00"J } 20 ]av ~- d--~ 2 
i,j~g2 

[<~o~,>~,olav a,jBj} (24) 

822/63/1-2-3 
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The second term of the above spin-glass susceptibility diverges with 
the critical exponent 7 ,=  1. This divergence can be understood to 
correspond to the transition from the paramagnetic phase to the spin-glass 
phase. The spin-glass transition point Ts~ is determined as follows: 

d e t ~ - d e t l [ ( a i a s ) ~ o ] a ~ - [ < a o a j > ~ o ] a d = O  at T=Ts~ (25) 

Near and above the transition point, this spin-glass susceptibility of the 
type of the effective-field theory shows the following behavior: 

with 

T s G  
Zso-~2s~ - as T ~ T s o + 0  (26) 

T -  Tsm 

~SG ~ k9~ Ei, jeoY2 F <0"00"i> 20]av ~ijflj (27) 
T3~ (d/dT) det a r= rsc 

This quantity (27) plays an important role in the CAM: See Section 3. 
When all the zao sites i ~ aQ are located in equivalent positions in view 

of geometrical symmetries of the cluster O, we can set 

[ L 2 ] a v  -- [LZ]av (28) 

Then the expressions (24), (25), and (27) take the following rather simple 
forms: 

C O = C 1 at T = Ts~ 

C o B  1 --  C1B o 
ZSG = Nfl2P ,4 Co C1 

;~s~= NI~4 C~ C1B~ 

(29) 

(30) 

(31) 

respectively, where 

and 

Bo- 
JE(2 

Co- 
j e  aO 

<0.00. J 2 2 
J ~  

[<O.O~j)2olav_ZaQ[ 2 

zOO 

)g20]av  = E 2 [<lTia  j 2 [ <O. O.j ) g20] a v 
j = l  

(32) 

(33) 

C1 = ~] (34) 
j e ~ O  
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for any i ~ f 2 .  It can be understood (1~ that Eq. (29) with (33) and (34) 
represents a balance between "ordering effects" and "disordering effects." 

These are the results obtained in the one-body-effective-field 
approximation for the cluster .(2. The formulas obtained here agree with the 
results of Suzuki's super-effective-field theory (SEFT) (1~ combined with 
the method of the "quenched real replicas. "(1~ For the "Bethe cluster," 
which is composed of a site and its nearest neighbors, these formulas are 
reduced to the results already obtained for the Bethe lattice. (~6~ The mean- 
field result by Edwards and Anderson, (1) which can be called the "Weiss 
approximation," is obtained by taking the limit z ~ oe (9,1o) in the equations 
for the Bethe cluster. It is expected that the approximation is improved 
gradually as we calculate on larger clusters. 

2.3. Numerical  Results 

In the following, we restrict ourselves to the J model, or the model 
with the following probability-distribution function of interactions: 

P(J) =- �89 J0) + (~(J+ Jo) } (35) 

with Jo>0 .  Some of them have been already obtained by Suzuki. (1~ 
Further calculations were done on computers by the brick-laying transfer 
method.(8) 

The treated clusters of the two- and three-dimensional systems are 
listed in Fig. 3 and Fig. 4, respectively. The results obtained from these 
clusters are listed in Tables I and II. The data 2D-a and 3D-a are the 
mean-field (1) results mentioned above. It can be observed that the critical 
points become lower and the quantities (27) become greater as the clusters 
become larger. 

3, THE T H E O R Y  OF THE C O H E R E N T - A N O M A L Y  M E T H O D  

In the present section, the coherent-anomaly method (CAM) (6-8) 
proposed by Suzuki is briefly reviewed. Applicability of the CAM to the 
present effective-field theory is discussed. A comment concerning the 
convergence of a series of approximations is mentioned. 

Near and above the transition point ~sGT(*), the true spin-glass suscep- 
tibility is expected to show the behavior 

X(s~(T) ~- C / ( T -  ~sGT(*~', as T ~  ~sGT(*) + 0 (36) 

with the nonclassical exponent 

7, > 1 (37) 
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On the other hand, the spin-glass susceptibility of the type of (24) derived 
in Section 2 may yield the classical, or Landau-type, behavior 

T (n) 
(n) g(n) SG 

Z S O ( T )  --~ ~ S G  T - -  T ( s ~  
as T ~  T (n) + 0  (38) SG 

with 

T ( - )  -~ T ( * )  a n d  7s = 1 SG ~ ~ S G  (39) 

where n specifies the size of a cluster used in an approximation. 

1 
! 
! 

nnl l~l l l l  
! 
! 
! 
I 

2D-a  

l �9 

c l 
b 

0 

C 

�9 

C 

�9 

�9 
0 F- 

L _.ff 
d 

�9 

0~---- 

) 

i I 

e 

t 

;------(3 

) 

f 
Fig. 3. Treated clusters of the two-dimensional system. The open dots denote the boundary 

sites of the clusters. 
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Consider  a series of clusters n = 1, 2, 3,.... If  the series converges to the 
infinite system, or  

lira ~SGT"(') = T(*lsa (40) 
n ~ a o  

lira ~,(")~T~ = Z s ~ ( T )  V T >  ~sG ,oso~ ~ T(*) (41) 

the discrepancy between the exponents  (37) and (39) is expected to cause 
the anomaly  of )~SG" 

~(") T(n)'--~ T(*)-t-O (42) S G  "-)" 0 0  a s  n ~ o% o r  S G  a S G  

I 
I 
! 

I 

- -  - ; . @ < - - -  o 
! 
! 
I 
1 

3D-a  

c o 

o 
o 

o 

o 

C 
b 

Fig. 4. 

d f 

Treated clusters of the three-dimensional system. The open dots denote the boundary 
sites of the clusters. 
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Table I. Data for Clusters of the 
Two-Dimensional  + J  Model 

Cluster a T s G ( J o / k B )  2SG(#~/J~) 

2D-a 2.00000 0.12500 
b 1.51865 0.38017 
c 1.45543 0.48918 
d 1.23795 1.31524 
e 1.17823 1.77188 
f 1.04629 3.76646 

a 2D-a, b,... denote the clusters in Fig. 3. 

Indeed, this behavior is observed in the data listed in Tables I and !I. Not 
only for the spin-glass, but for general phase transitions, Suzuki proposed 
that there may exist some systematic series of approximations for which the 
residue )~sG can be written in the form (6'7) 

C! ~(n) 
S G - - t T ( n )  T( , )~4  ' a s  n--*oc, o r  T(n)-+T(*)• ~SG T (43) 

~, S G  ~ S G  I 

This behavior is called the coherent anomaly, and the series which shows 
this anomaly is called a canonical series. After some discussions (6'7) using 
the "envelope theory" or the "finite-degree-of-approximations scaling," 

Table II. Data for the Clusters of the 
Three-Dimensional  _+J Model 

Cluster a Ts~(Jo/kB) Zsa(p 4 /Jg) 

3D-a (9) 2.44949 0.08333 
b (9) 2.07809 0.16140 
c 2.03051 0.18825 
d 1.92534 0.27110 
e b 1.892(4) 0.304(3) 
f 1.79015 0.50646 
gb 1.710(5) 0.725(18) 

3D-a, b,... denote the clusters in Fig. 4. 
b For these clusters, we take the quenched averages of ran- 

dom samples, because of the limitation of the computa-  
tional time and memory; about 0.03% out of all samples 
are taken for the cluster e, and about 0.17% for the 
cluster g. 
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which is analogous to Fisher's finite-size scaling theory, (17) the "coherent- 
anomaly relation" can be derived as follows(6'7): 

7s = 0 + 1 (44) 

According to the above discussions, fitting some numerical data T(~ ~ S G ,  
T(2) and q(1) ~(2) to the function (43) may give the true critical expo- S G ' " '  / ~S G '  /L SG ~"" 

nent 7, with rather good accuracy using the relation (44). To be brief, the 
CAM determines the fractional critical exponents from the way in which 
the nonclassical properties emerge as the approximations are improved. 
The CAM has been applied to such critical phenomena as the ferro- 
magnetic(6 8) and the chiral ~12~ transitions, and yields good results: See the 
references cited in ref. 11. 

It is not possible at present to prove rigorously that the present series 
of approximations is a canonical series. The following phenomenological 
discussion, (7'~s~ however, can be made: Assume the scaling form of the spin- 
glass correlation as 

with 

[ < a , a y ) 2 ] ~  v e x p [ - l i - j l / r  
J i _ j l d  2+. (45) 

~(T) oc (T---sGT(*)~-v (46) 

Now we need to distinguish between the exponent t/• for correlations 
perpendicular to the surface of the cluster and the exponent t/l, for ones 
parallel to it. The summations Co and C1 of Eqs. (33) and (34) for a cluster 
of sufficiently large size L may be evaluated as follows: 

Co~ 2 [<GO0. j 2 f3 > ~20]av 
j e  c~(2 (2 

jec~f2 D 

e x p [ - R / ~ ( T ) ]  dd_~ R oC L~-"•  ;+ 
Rd-2+.L 

e x p [ - R ' / ~ ( T ) ]  dd - ~R 
R,d_ 2 +,l ~ OC L1 -"lfl(,~ ) 

(47) 

where 2( T) - L/~( T) is a scaling variable, R'-=2Lsin(q) /2) ,  and the 
function f l  is defined by 

= exp [--22 sin(cp/2) ] 
f j(2)  = A sind_ 2 +.,,(qff2 ) sin q~ &o (48) 

with an appropriate constant A. The approximate critical point TsG(L ) is 
determined by Eq. (29), or the following equation: 

e~+SG~L)f ~(2sG(L ) ) = L " " -  ,71 (49) 
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where 
L 

2so(L) -= (50) 
~(TsG(L)) 

The solution of this equation can be expressed as 

Ts~(L) - ~s~T(*~ _~ L-~/~[a + b(r/ll _ t/• log L]  1/~ (51) 

with some constants a, b, and c, as in ordinary phase transitions. (7) Then, 
the condition (40) may hold for the present series of approximations. 

The summations of Eq. (32) can be also evaluated as the forms 
Bo~L2-" f2 (2  ) and B 1 ~ L 2 - n f 3 ( 2  ) with some scaling functions f2 and f3- 
The critical behavior of the anomaly (31) may be written in the following 
form: 

L ~ . [ V ~ ( ~ ) - L  ~F~(,~)] ~ (52) 
~s~ (L)~  ( 1 - ~ ~ ) ]  =~s~ 

with At/-= Iq• and some functions F 1 and F2. The relations 

2 = L ( T  - T(*)~v and = L v ( T _ 7 . c . ) ~  I (53) a S G  I 0 - T  ~t SG ) 

give the behavior 

t 1 - r /  

ZsG(L) ( r -  T(*)'lv-1 OCr ( t , r ( , ) l~2- . )v-1  (54) 
~s~ I r= rsG(L) L T s G , L , -  a S G  -1 

in the limit of L --* ~ ,  or the coherent anomaly (43) with ~b = (2 - t/) v - I. 
The coherent-anomaly ;relation (44) can be derived from the above 
behavior together with the scaling relation 7s = ( 2 -  t/)v. 

We make the following comment. We can know whether the "degree 
of approximation ''(6 8) 

T(n) T ( * )  
At Z(n) ~ =_ --SG-- ~SG 
v~ sGJ ;r5-.5 

J t S G  
(55) 

is small enough or not in the following way: The same discussion as for 
(36)-(44) can be made for a temperature-dependent variable x(T)  instead 
of T, if the following expansion is possible: 

x -- Xs~ ---- x(T) - x(Ts~)  -~ 7( T -  TsG) (56) 

If a series of approximations converges enough to show the coherent 
anomaly, critical data ~sG'r(*) and ~ derived from the CAM analyses are 
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expected not to depend on the choice of the fitting variable x. Conversely, 
a variety of critical data resulting from this choice can be regarded as 
showing that the series has not yet converged enough. 

In the following analyses of the three-dimensional + J  model, the 
fitting variables x =  T, 1/T, tanh(1/T), tanh2(1/r),  and e x p ( - 1 / r )  are 
used, where we have set kB = J =  1. 

4. CRITICAL DATA A N D  D I S C U S S I O N S  

4.1. Results for the Two-Dimens iona l  + J  Model  

By the least-square fitting of the data for the two-dimensional __J 
model (Table I), it can be concluded that Ts(~ ) =-0. 

Figure 5a suggests that we had better exclude the point 2D-a of the 
mean-field type. The mean-field approximation may not take part in the 
canonical series of the effective-field theory. 

When we take both parameters 0 and -r(,~ *so  as free and fit the data b f 
of Table I to the function 

C 
)~sc- ( r s ~ -  --soT(*)~*, (57) 

we obtain 

T ( * )  = 0 .2  _+ 0.3Jo/k B and 7~, = 6 .3  + 1.,3 SG (58) 

where these errors are estimated only from the errors appearing in the 
least-square fitting. The critical temperature may be rather low, even if it 
exists. 

If we assume the zero-temperature transition as in most studies (19-22~ 
and fit the data l>f  to the function (57) with ~saT(*~-0, we obtain 
7s = 5.25(5) for ~s~r(*~-0, where these errors are estimated as done above: 
See Fig. 5a. Note that in the case of the zero-temperature transition the 
critical exponent is obtained from the relation 7 s = ~ s - 2 =  5 - 1 :  See 
Appendix A. We also test the function l o g ) ~ s G = - 0 1 o g ( T s ~ ) +  C', and 
obtain 7~ = 5.15(5). The naive average of them gives 

7s=5.2(1) for ~saT(*)--0 (59) 

This is in good agreement with the data (2~ of the high-temperature expan- 
sion, 7s=5.3(3) for ~sGT(*)--0,= and with the data ~21) of the Monte Carlo 
simulation, ' / s -  5.3 for ls~r(*)---0. We can also compare it with the result (22) 
of the numerical simulation, 7s = 4.6(5). Our critical data are, however, 
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obtained from the calculations of rather small clusters. This shows the 
usefulness of the present theory combined with the CAM. 

In connection with the above conclusion (59), we discuss here the 
proposition that the lower critical dimensionality is dj~-2.5. (24) From 
the phenomenology developed by McMillan, (25) it may be concluded that 

( a )  2 . 0  ~ ' I ~ . . . .  ~ . . . .  ~ ' ' ' ~ 1 ~  ' a ~  ~ 
" a 

S~ l o  
E- 

O.O ~ 1 1  I I . . . .  I . . . .  I . . . .  i . . . .  I I ~  

o o.2  o.7  

~-(~) ~/5.25 

(b) 1.5 

1.0 

~U} 0.5 

IX 
o.o 

0 

-0.5 

-I.0 

0.4 0.6 0.8 

Fig. 5. The data points b-f  of the two-dimensional + J  model fitted to the functions 
(a)  /~sG~T(n) . . . .  -- 5 PIT(n)- 525SG and (b) log Zsa~=(") = 3'90/(T~c) ) z - -2 .24 .  
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the spin-glass susceptibility of systems of dimensionality d shows the 
following criticality: 

t ( T  -T(*)~  Y* for d>dl  a S G  ) 

ZSG~ ec/r2 for d=dt  (60) 

[,T ~ for d <  d t 

In the case of Zs~ ~ e c/r2, the coherent anomaly may also show the same 
behavior. The data log ~.SG~(n) VS. I/(T~G)) 2 are plotted in Fig. 5b. The last two 
data points e and f yield log ~ ) =  3.90/(T(s~) 2 -  2.24. The linearity of the 
data is, however, worse than that of the fitting to the function (57). This 
observation seems to be favorable to our tentative conclusion (59) in our 
present approximation. Then, the present results suggest that dt > 2. 

4.2. Results for  the Three-Dimensional  _+J Model  

As for the three-dimensional + J model, although the existence of the 
transition point can be confirmed, it is difficult at present to conclude for 
it a firm value. 

In least-square-fitting of these data, a difficulty arises: The data only 
of the clusters e and g have statistical errors because of the Monte Carlo 
sampling. The present analyses are made using the statistical errors for 
data of the clusters e and g, and using the errors appearing in the least- 
square-fitting for data of other clusters. This method is, however, still open 
to discussion, because they are different types of errors. 

The fitting to the function (43) is shown in Fig. 6. The data show some 
irregular behavior: Not only the data points 3D-a (as in the two-dimen- 
sional system), but also the data point g does not seem to fit to the other 
data. As mentioned in Section 3, the data are fitted using fitting variables 
x = T, 1/T, tanh(1/T), tanh2(1/T), and exp(-1/T) .  The results obtained are 
shown in Table III, where the errors are estimated only from the errors 
appearing in the least-square-fitting. Averaging them yields 

T(*) 1.2(1)(Jo/kB) and 7s=4( l )  (61) S G  

where the errors are standard deviations. Since the data rather apart from 
the above average have relatively large errors, the contributions to the 
values (61) are small. Indeed the value of the critical point agrees with the 
recent results by other authors J20 '23) As for the critical exponent, however, 
the estimation is too rough at present to compare with them. The values 
of ~ obtained for some fitting variables x under the fixed values T( . )  JtSG are 
plotted in Fig. 7. The curves do not agree with each other. This suggests 
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ssb a[]  

Fig, 6. 

a~ 
[-- 

131~ 

I0 '~,,,I .... I .... I .... 
0 0 5  1 1 5  

t . . . .  I , ~ J  

2 2 5  3 

-(SG) - 1 / %  4 

The data points b-g of the three-dimensional _+J model fitted to the function 
ZSG = 0.083( TsG -- 1.31 ) - 2,4. 

that the series of approximations has not converged enough to show the 
coherent anomaly. 

The fractional behavior which characterizes the three-dimensional 
system may emerge for the first time after more body-clusters such as the 
cluster g. In other words, calculations of larger clusters may be necessary 
to observe the coherent anomaly. Then a more efficient algorithm must be 
developed, because we now approach the limitation of the computational 
time. 

Tab le  III .  T h e  Data  Po in ts  b -g  f o r  t h e  
T h r e e - D i m e n s i o n a l  + J  M o d e l  F i t ted  to  

t h e  F u n c t i o n  e( - )  - r Ix(- )  _ Xs(~)] - ~  A S G  - -  v I S G  

T(*)o  Fitting variable x l sG  7s a 

T 1.31(6) 2.4(2) 
lIT 1.07(13) 6.1(1.7) 
t a n h ( 1 / r )  1.14(12) 4.2(8) 
tanh2(1/T) 0.94(22) 7.6(3.0) 
e x p ( -  l/T) 1.06(13) 5.7(1.3) 

a Errors of these date are estimated from the errors appear- 
ing in the least-square fitting to the function. 
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Fig. 7. The data points b-g of the three-dimensional +J  model fitted to the estimate 
under fixed values of -s~Tl*l. Fitting variables are (--) Ts~, (- -) 1/Tsa, (-.-) tanh(1/Ts~), (...) 
tanh2(1/Tsc), and ( . . . .  ) exp(-1/TsG ). (O) Values of the best fittings listed in Table Ill. 

5. C O N C L U S I O N  

An effective-field theory was constructed and the results of the mean- 
field and Bethe approximations were rederived. The approximations can be 
improved more and more, and that systematically. The calculations for 
some clusters and the application of the CAM to them show the usefulness 
of this theory. Especially for the two-dimensional + J  mod~l, we have 
obtained the spin-glass transition point Ts~ = 0 and the critical exponent 
7~.=5.2(1) near T = 0 ,  which agree with the results by other authors as 
well, by the calculations of rather small clusters. As for the three-dimen- 
sional _+ J model, the existence of the transition can be confirmed. We may 
have to treat larger clusters, however (but possibly smaller than ones used 
in other methods), to evaluate accurate critical values by using the CAM 
theory. We are now planning to make Monte Carlo simulations. 

A P P E N D I X .  T H E  D E F I N I T I O N  OF T H E  S P I N - G L A S S  
S U S C E P T I B I L I T Y  

In the two-dimensional spin-glass system of Ising spins, the conclusion 
that Ts~ = 0 is now quite acceptable. There are two types of definition of 
the response function; the Edwards-Anderson susceptibility, as 

1 
ZEA ~ ~. ~ [- < O - i O ' j  ) 2 ]  a v  (A.1) 

l ,J  
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and  the spin-glass susceptibil i ty,  as 

f1 2 
ZSG~'N 2 I-(O"iO-j)2]av (A.2) 

l,j 

In the case of T s G = 0 ,  there exists a d iscrepancy between the crit ical 
exponents  of the s ingular i ty  of (A.1) and  (A.2) as follows: ){EA oCT -rs and  

Z s o ~  T ~ ' ,wi th  

9 , = G + 2  (A.3) 

In the present  paper ,  we use the definit ion )~so [see Eq. (24)] ,  but  general ly  
the definit ion )~EA is used. 
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